chore: nbi pm xlxs generate to json schema
This commit is contained in:
BIN
docs/nbi/AMF-PM(V1.1.5)-Company-Version00.xlsx
Executable file
BIN
docs/nbi/AMF-PM(V1.1.5)-Company-Version00.xlsx
Executable file
Binary file not shown.
BIN
docs/nbi/PCF-PM(V1.1.4)-Company-Version00.xlsx
Executable file
BIN
docs/nbi/PCF-PM(V1.1.4)-Company-Version00.xlsx
Executable file
Binary file not shown.
BIN
docs/nbi/SMF-PM(V1.2.1)-Company-Version00.xlsx
Executable file
BIN
docs/nbi/SMF-PM(V1.2.1)-Company-Version00.xlsx
Executable file
Binary file not shown.
BIN
docs/nbi/UDM-PM(V1.2.2)-Company-Version00.xlsx
Executable file
BIN
docs/nbi/UDM-PM(V1.2.2)-Company-Version00.xlsx
Executable file
Binary file not shown.
BIN
docs/nbi/UPF-PM(V1.2.1)-Company-Version00.xlsx
Executable file
BIN
docs/nbi/UPF-PM(V1.2.1)-Company-Version00.xlsx
Executable file
Binary file not shown.
175
docs/nbi/generate_ne_pm.py
Normal file
175
docs/nbi/generate_ne_pm.py
Normal file
@@ -0,0 +1,175 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import pandas as pd
|
||||
import json
|
||||
import random
|
||||
import os
|
||||
import glob
|
||||
|
||||
def generate_pm_json(excel_file_path, output_file_path):
|
||||
"""
|
||||
从 Excel 文件中提取英文名称和空间粒度,生成 PM JSON 文件
|
||||
"""
|
||||
try:
|
||||
# 检查文件是否存在
|
||||
if not os.path.exists(excel_file_path):
|
||||
print(f"错误:文件 {excel_file_path} 不存在")
|
||||
return False
|
||||
|
||||
print(f"正在读取 Excel 文件: {excel_file_path}")
|
||||
|
||||
# 读取 Excel 文件的所有工作表
|
||||
excel_data = pd.read_excel(excel_file_path, sheet_name=None)
|
||||
|
||||
# 使用字典按 granularity 分组
|
||||
granularity_groups = {}
|
||||
processed_sheets = 0
|
||||
|
||||
# 遍历所有工作表,查找包含"英文名称"列的表格
|
||||
for sheet_name, df in excel_data.items():
|
||||
print(f" 处理工作表: {sheet_name}")
|
||||
|
||||
# 检查是否包含"英文名称"列
|
||||
if '英文名称' in df.columns:
|
||||
processed_sheets += 1
|
||||
print(f" - 找到英文名称列,共 {len(df)} 行数据")
|
||||
|
||||
# 检查是否有空间粒度列
|
||||
granularity_col = None
|
||||
for col in df.columns:
|
||||
if '空间粒度' in str(col) or '粒度' in str(col):
|
||||
granularity_col = col
|
||||
break
|
||||
|
||||
# 用于记录当前sheet中最后一个不为空的空间粒度
|
||||
last_valid_granularity = "DefaultFunction"
|
||||
|
||||
for index, row in df.iterrows():
|
||||
english_name = row['英文名称']
|
||||
|
||||
# 跳过空值和非字符串值
|
||||
if pd.notna(english_name) and str(english_name).strip() and str(english_name) != 'nan':
|
||||
english_name = str(english_name).strip()
|
||||
|
||||
# 获取空间粒度信息
|
||||
current_granularity = None
|
||||
if granularity_col and pd.notna(row[granularity_col]):
|
||||
current_granularity = str(row[granularity_col]).strip()
|
||||
if current_granularity: # 确保不是空字符串
|
||||
last_valid_granularity = current_granularity
|
||||
|
||||
# 如果当前行的空间粒度为空,使用最后一个有效的空间粒度
|
||||
granularity = last_valid_granularity
|
||||
|
||||
# 生成随机值
|
||||
random_value = random.randint(0, 16)
|
||||
|
||||
kpi = {
|
||||
"KPIID": english_name,
|
||||
"KPIValues": [
|
||||
{
|
||||
"Name": "Total",
|
||||
"Value": random_value
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
# 按 granularity 分组
|
||||
if granularity not in granularity_groups:
|
||||
granularity_groups[granularity] = []
|
||||
|
||||
granularity_groups[granularity].append(kpi)
|
||||
|
||||
# 显示使用的粒度信息
|
||||
granularity_info = ""
|
||||
if current_granularity:
|
||||
granularity_info = f" (当前: {granularity})"
|
||||
else:
|
||||
granularity_info = f" (继承: {granularity})"
|
||||
|
||||
print(f" 添加 KPI: {english_name} = {random_value}{granularity_info}")
|
||||
else:
|
||||
print(f" - 跳过(无英文名称列)")
|
||||
|
||||
# 生成最终的 JSON 结构
|
||||
result = []
|
||||
for granularity, kpis in granularity_groups.items():
|
||||
result.append({
|
||||
"ObjectType": granularity,
|
||||
"KPIs": kpis
|
||||
})
|
||||
|
||||
# 写入文件
|
||||
with open(output_file_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(result, f, indent=4, ensure_ascii=False)
|
||||
|
||||
print(f" 成功生成文件: {output_file_path}")
|
||||
print(f" 处理了 {processed_sheets} 个工作表")
|
||||
print(f" 生成了 {len(granularity_groups)} 个对象类型")
|
||||
for granularity, kpis in granularity_groups.items():
|
||||
print(f" - {granularity}: {len(kpis)} 个 KPI")
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: {str(e)}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
def main():
|
||||
print("PM JSON 批量生成器")
|
||||
print("=" * 60)
|
||||
|
||||
# 定义要处理的文件列表
|
||||
pm_files = [
|
||||
"AMF-PM(V1.1.5)-Company-Version00.xlsx",
|
||||
"PCF-PM(V1.1.4)-Company-Version00.xlsx",
|
||||
"SMF-PM(V1.2.1)-Company-Version00.xlsx",
|
||||
"UDM-PM(V1.2.2)-Company-Version00.xlsx",
|
||||
"UPF-PM(V1.2.1)-Company-Version00.xlsx"
|
||||
]
|
||||
|
||||
# 也可以自动发现当前目录下的所有 PM Excel 文件
|
||||
# pm_files = glob.glob("*-PM(*)-Company-Version*.xlsx")
|
||||
|
||||
successful_files = 0
|
||||
failed_files = 0
|
||||
|
||||
for excel_file in pm_files:
|
||||
print(f"\n处理文件: {excel_file}")
|
||||
print("-" * 50)
|
||||
|
||||
# 检查文件是否存在
|
||||
if not os.path.exists(excel_file):
|
||||
print(f" 警告:文件 {excel_file} 不存在,跳过")
|
||||
failed_files += 1
|
||||
continue
|
||||
|
||||
# 生成输出文件名
|
||||
base_name = os.path.splitext(excel_file)[0]
|
||||
output_file = f"{base_name}-generated.json"
|
||||
|
||||
# 处理文件
|
||||
if generate_pm_json(excel_file, output_file):
|
||||
successful_files += 1
|
||||
else:
|
||||
failed_files += 1
|
||||
|
||||
# 汇总结果
|
||||
print("\n" + "=" * 60)
|
||||
print("批量处理完成!")
|
||||
print(f"成功处理: {successful_files} 个文件")
|
||||
print(f"失败/跳过: {failed_files} 个文件")
|
||||
print(f"总计: {successful_files + failed_files} 个文件")
|
||||
|
||||
if successful_files > 0:
|
||||
print("\n生成的文件列表:")
|
||||
for excel_file in pm_files:
|
||||
if os.path.exists(excel_file):
|
||||
base_name = os.path.splitext(excel_file)[0]
|
||||
output_file = f"{base_name}-generated.json"
|
||||
if os.path.exists(output_file):
|
||||
print(f" - {output_file}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
225
docs/nbi/pm_generator.go
Normal file
225
docs/nbi/pm_generator.go
Normal file
@@ -0,0 +1,225 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"math/rand"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// KPIValue 表示单个 KPI 值
|
||||
type KPIValue struct {
|
||||
Name string `json:"Name"`
|
||||
Value int `json:"Value"`
|
||||
}
|
||||
|
||||
// KPI 表示单个 KPI 项
|
||||
type KPI struct {
|
||||
KPIID string `json:"KPIID"`
|
||||
KPIValues []KPIValue `json:"KPIValues"`
|
||||
}
|
||||
|
||||
// PMObject 表示性能管理对象
|
||||
type PMObject struct {
|
||||
ObjectType string `json:"ObjectType"`
|
||||
KPIs []KPI `json:"KPIs"`
|
||||
}
|
||||
|
||||
// PMData 表示完整的性能管理数据
|
||||
type PMData []PMObject
|
||||
|
||||
// generateRandomValue 生成 0-16 之间的随机数
|
||||
func generateRandomValue() int {
|
||||
return rand.Intn(17) // 0-16
|
||||
}
|
||||
|
||||
// generatePMDataFromSchema 从 schema 文件生成随机数据
|
||||
func generatePMDataFromSchema(schemaFile string, outputFile string) error {
|
||||
// 读取 schema 文件
|
||||
schemaData, err := os.ReadFile(schemaFile)
|
||||
if err != nil {
|
||||
return fmt.Errorf("读取 schema 文件失败: %v", err)
|
||||
}
|
||||
|
||||
// 解析 JSON
|
||||
var pmSchema PMData
|
||||
if err := json.Unmarshal(schemaData, &pmSchema); err != nil {
|
||||
return fmt.Errorf("解析 JSON 失败: %v", err)
|
||||
}
|
||||
|
||||
// 生成新的随机数据
|
||||
var newPMData PMData
|
||||
for _, pmObj := range pmSchema {
|
||||
newObj := PMObject{
|
||||
ObjectType: pmObj.ObjectType,
|
||||
KPIs: make([]KPI, len(pmObj.KPIs)),
|
||||
}
|
||||
|
||||
for i, kpi := range pmObj.KPIs {
|
||||
newKPI := KPI{
|
||||
KPIID: kpi.KPIID,
|
||||
KPIValues: make([]KPIValue, len(kpi.KPIValues)),
|
||||
}
|
||||
|
||||
for j, kpiVal := range kpi.KPIValues {
|
||||
newKPI.KPIValues[j] = KPIValue{
|
||||
Name: kpiVal.Name,
|
||||
Value: generateRandomValue(),
|
||||
}
|
||||
}
|
||||
|
||||
newObj.KPIs[i] = newKPI
|
||||
}
|
||||
|
||||
newPMData = append(newPMData, newObj)
|
||||
}
|
||||
|
||||
// 写入新文件
|
||||
outputData, err := json.MarshalIndent(newPMData, "", " ")
|
||||
if err != nil {
|
||||
return fmt.Errorf("序列化 JSON 失败: %v", err)
|
||||
}
|
||||
|
||||
if err := os.WriteFile(outputFile, outputData, 0644); err != nil {
|
||||
return fmt.Errorf("写入文件失败: %v", err)
|
||||
}
|
||||
|
||||
fmt.Printf("成功生成随机数据文件: %s\n", outputFile)
|
||||
return nil
|
||||
}
|
||||
|
||||
// generatePMDataFromMultipleSchemas 批量处理多个 schema 文件
|
||||
func generatePMDataFromMultipleSchemas(schemaDir string) error {
|
||||
// 查找所有 *-generated.json 文件
|
||||
pattern := filepath.Join(schemaDir, "*-generated.json")
|
||||
schemaFiles, err := filepath.Glob(pattern)
|
||||
if err != nil {
|
||||
return fmt.Errorf("查找 schema 文件失败: %v", err)
|
||||
}
|
||||
|
||||
if len(schemaFiles) == 0 {
|
||||
return fmt.Errorf("未找到任何 schema 文件 (pattern: %s)", pattern)
|
||||
}
|
||||
|
||||
fmt.Printf("找到 %d 个 schema 文件\n", len(schemaFiles))
|
||||
|
||||
successCount := 0
|
||||
failCount := 0
|
||||
|
||||
for _, schemaFile := range schemaFiles {
|
||||
// 生成输出文件名:将 "-generated.json" 替换为 "-random.json"
|
||||
outputFile := strings.Replace(schemaFile, "-generated.json", "-random.json", 1)
|
||||
|
||||
fmt.Printf("\n处理文件: %s\n", filepath.Base(schemaFile))
|
||||
fmt.Printf("输出文件: %s\n", filepath.Base(outputFile))
|
||||
|
||||
if err := generatePMDataFromSchema(schemaFile, outputFile); err != nil {
|
||||
fmt.Printf("错误: %v\n", err)
|
||||
failCount++
|
||||
} else {
|
||||
successCount++
|
||||
}
|
||||
}
|
||||
|
||||
fmt.Printf("\n处理完成! 成功: %d, 失败: %d\n", successCount, failCount)
|
||||
return nil
|
||||
}
|
||||
|
||||
// printPMDataSummary 打印 PM 数据摘要信息
|
||||
func printPMDataSummary(file string) error {
|
||||
data, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var pmData PMData
|
||||
if err := json.Unmarshal(data, &pmData); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
fmt.Printf("\n文件: %s\n", filepath.Base(file))
|
||||
fmt.Printf("对象类型数量: %d\n", len(pmData))
|
||||
|
||||
totalKPIs := 0
|
||||
for _, obj := range pmData {
|
||||
fmt.Printf(" - %s: %d 个 KPI\n", obj.ObjectType, len(obj.KPIs))
|
||||
totalKPIs += len(obj.KPIs)
|
||||
}
|
||||
fmt.Printf("总 KPI 数量: %d\n", totalKPIs)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// 示例用法函数
|
||||
func main() {
|
||||
// 设置随机种子
|
||||
// rand.Seed(time.Now().UnixNano())
|
||||
|
||||
if len(os.Args) < 2 {
|
||||
fmt.Println("用法:")
|
||||
fmt.Println(" go run pm_generator.go <command> [args]")
|
||||
fmt.Println("")
|
||||
fmt.Println("命令:")
|
||||
fmt.Println(" batch <directory> - 批量处理目录下的所有 *-generated.json 文件")
|
||||
fmt.Println(" single <input> <output> - 处理单个文件")
|
||||
fmt.Println(" summary <file> - 显示文件摘要信息")
|
||||
fmt.Println("")
|
||||
fmt.Println("示例:")
|
||||
fmt.Println(" go run pm_generator.go batch .")
|
||||
fmt.Println(" go run pm_generator.go single AMF-PM-generated.json AMF-PM-random.json")
|
||||
fmt.Println(" go run pm_generator.go summary AMF-PM-random.json")
|
||||
return
|
||||
}
|
||||
|
||||
command := os.Args[1]
|
||||
|
||||
switch command {
|
||||
case "batch":
|
||||
dir := "."
|
||||
if len(os.Args) > 2 {
|
||||
dir = os.Args[2]
|
||||
}
|
||||
|
||||
fmt.Println("PM 数据随机生成器 - 批量模式")
|
||||
fmt.Println(strings.Repeat("=", 50))
|
||||
|
||||
if err := generatePMDataFromMultipleSchemas(dir); err != nil {
|
||||
fmt.Printf("错误: %v\n", err)
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
case "single":
|
||||
if len(os.Args) < 4 {
|
||||
fmt.Println("用法: go run pm_generator.go single <input_file> <output_file>")
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
inputFile := os.Args[2]
|
||||
outputFile := os.Args[3]
|
||||
|
||||
fmt.Printf("处理单个文件: %s -> %s\n", inputFile, outputFile)
|
||||
|
||||
if err := generatePMDataFromSchema(inputFile, outputFile); err != nil {
|
||||
fmt.Printf("错误: %v\n", err)
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
case "summary":
|
||||
if len(os.Args) < 3 {
|
||||
fmt.Println("用法: go run pm_generator.go summary <file>")
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
file := os.Args[2]
|
||||
if err := printPMDataSummary(file); err != nil {
|
||||
fmt.Printf("错误: %v\n", err)
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
default:
|
||||
fmt.Printf("未知命令: %s\n", command)
|
||||
os.Exit(1)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user