
EMS restful interfaces
1. 状态管理
2 故障管理

2.1 告警上报
2.2 获取网元告警

3. 配置管理
3.1 参数配置表
3.2 获取参数
3.3 配置参数
3.4 创建/修改网元

4 性能管理
4.1 任务管理
4.2 订阅任务数据上报
4.3 黄金指标上报
4.4 测量数据主动上报
4.5 测量数据获取/补采

5 跟踪管理
5.1 订阅管理
5.2 消息上报

6. 操作维护
6.1 MML命令

6.1.1 MML命令格式
6.1.2 MML配置表

6.2 MML接口
7 北向接口(NBI)

7.1 查询资源数据接口
8 文件接口

8.1 软件管理
8.1.1 软件包管理接口
8.1.2 网元软件包管理接口

8.2 License管理
8.2.1 License文件管理接口
8.2.2 网元License管理接口

9 4A接口
9.1 从账号(user)管理接口

9.1.1 查询全部从账号(user)接口
9.1.2 单个从账号(user)接口

9.2 角色(role)管理接口
9.2.1 查询全部角色(role)接口
9.2.2 单个角色(role)接口

9.3 登录认证接口
9.2.1 登录认证

10 核心网用户信息接口
10.1 UDM签约用户

10.1.1 查询/增加/修改/删除
10.2 UDM鉴权用户

10.2.1 查询/增加/修改/删除
10.3 UE信息

10.3.1 查询SMF在线用户数
10.3.2 查询SMF在线用户

10.4 IMS在线用户信息
10.4.1 查询IMS在线用户信息

10.5 基站信息
10.5.1 查询某个AMF下的基站信息

EMS restful interfaces

1. 状态管理

URI:

/api/rest/systemManagement/v1/elementType/{elementTypeValue}/objectType/system
State

说明：

** elementTypeValue=smf/amf/..查询的网元网元类型

Method:

GET

Return:

NF -> OMC BE的json结构

type SysState struct {
HostName string `json:"hostName"` // linux命令: hostname
OsInfo string `json:"osInfo"` // linux命令: uname -a
DbInfo string `json:"dbInfo"` // 网元如果有db, 显示数据库名和版

本信息， OMC: mysql --version
Version string `json:"version"` // 软件版本信息: 16.1.1
IpAddr []string `json:"ipAddr"` // 网管的ipv4和ipv6
Port uint16 `json:"port"` // 用于网管的port
Capability uint32 `json:"capability"`
SerialNum string `json:"serialNum"`
ExpiryDate string `json:"expiryDate"`
HardwareInfo struct {

CPUs int `json:"cpus"` // 主机(裸机/虚拟机)的cpu个数
Memory int `json:"memory"` // 主机(裸机/虚拟机): 配置的内存

} `json:"hardwareInfo"`
CpuUsage struct {

NfCpuUsage uint16 `json:"nfCpuUsage"`
SysCpuUsage uint16 `json:"sysCpuUsage"`

} `json:"cpuUsage"`
MemUsage struct {

TotalMem uint32 `json:"totalMem"`
NfUsedMem uint32 `json:"nfUsedMem"`
SysMemUsage uint16 `json:"sysMemUsage"`

} `json:"memUsage"`
DiskSpace struct {

PartitionNum uint8 `json:"partitionNum"`
PartitionInfo []struct {

Total uint32 `json:"total"` // MB
Used uint32 `json:"used"` // MB

} `json:"partitionInfo"`
} `json:"diskSpace"`
//Timestamp string `json:"timestamp"`

}

Example: OMC BE -> OMC FE

 "data": [
 {
 "AMF_0": {
 "error": {
 "errorCode": "1",
 "errorInfo": "Internal server error, NF connnect refused"
 },
 "ipAddress": "192.168.2.188"
 }
 },
 {
 "SMF_0": {
 "ipAddress": "192.168.1.232",

 "systemState": {
 "capability": 10000,
 "cpuUsage": {
 "nfCpuUsage": 2,
 "sysCpuUsage": 52
 },
 "diskSpace": {
 "partitionInfo": [
 {
 "total": 1920,
 "used": 0
 },
 {
 "total": 393,
 "used": 13
 },
 {
 "total": 48700,
 "used": 32431
 },
 {
 "total": 1965,
 "used": 0
 },
 {
 "total": 5,
 "used": 0
 },
 {
 "total": 1965,
 "used": 0
 },
 {
 "total": 55,
 "used": 55
 },
 {
 "total": 63,
 "used": 63
 },
 {
 "total": 91,
 "used": 91
 },
 {
 "total": 49,
 "used": 49
 },
 {
 "total": 55,
 "used": 55
 },
 {
 "total": 73,
 "used": 73
 },
 {

 "total": 91,
 "used": 91
 },
 {
 "total": 1475,
 "used": 206
 },
 {
 "total": 49,
 "used": 49
 },
 {
 "total": 393,
 "used": 13
 },
 {
 "total": 393,
 "used": 0
 },
 {
 "total": 73,
 "used": 73
 },
 {
 "total": 63,
 "used": 63
 }
],
 "partitionNum": 19
 },
 "expiryDate": "2025-02-28",
 "memUsage": {
 "nfUsedMem": 163992,
 "sysMemUsage": 1345,
 "totalMem": 4025608
 },
 "serialNum": "13740126",
 "version": "1.5.3.2"
 }
 }
 },
 {
 "SMF_1": {
 "ipAddress": "192.168.1.173",
 "systemState": {
 "capability": 10000,
 "cpuUsage": {
 "nfCpuUsage": 0,
 "sysCpuUsage": 69
 },
 "diskSpace": {
 "partitionInfo": [
 {
 "total": 3966,
 "used": 0
 },
 {

 "total": 797,
 "used": 0
 },
 {
 "total": 200559,
 "used": 5968
 },
 {
 "total": 3987,
 "used": 0
 },
 {
 "total": 5,
 "used": 0
 },
 {
 "total": 3987,
 "used": 0
 },
 {
 "total": 797,
 "used": 0
 }
],
 "partitionNum": 7
 },
 "expiryDate": "2024-12-31",
 "memUsage": {
 "nfUsedMem": 212136,
 "sysMemUsage": 720,
 "totalMem": 8167360
 },
 "serialNum": "13740272",
 "version": "1.5.3.3"
 }
 }
 }
]
}

2 故障管理

2.1 告警上报

URI

/api/rest/faultManagement/v1/elementType/{elementTypeValue}/objectType/alarms

Method

POST

Relations

NF->OMC

Body

type Alarm struct {
 AlarmSeq int `json:"alarmSeq"`
 AlarmId string `json:"alarmId"`
 NeId string `json:"neId"`
 AlarmCode int `json:"alarmCode"`
 AlarmTitle string `json:"alarmTitle"`
 EventTime string `json:"eventTime"`
 AlarmType string `json:"alarmType"`
 OrigSeverity string `json:"origSeverity"`
 PVFlag string `json:"pvFlag"`
 NeName string `json:"neName"`
 NeType string `json:"neType"`
 ObjectName string `json:"objectName"`
 LocationInfo string `json:"locationInfo"`
 Province string `json:"province"`
 AlarmStatus int `json:"alarmStatus"`
 SpecificProblem string `json:"specificProblem"`
 SpecificProblemID string `json:"specificProblemID"`
 AddInfo string `json:"addInfo"`
}

2.2 获取网元告警

URI

/api/rest/faultManagement/v1/elementType/{elementTypeValue}/objectType/alarms

Method

GET

Relations

OMC->NF

Body

n/a

Return

type Alarms struct {
 Alarms []struct {
 AlarmSeq int `json:"alarmSeq"`
 AlarmId string `json:"alarmId"`
 NeId string `json:"neId"`
 AlarmCode int `json:"alarmCode"`
 AlarmTitle string `json:"alarmTitle"`
 EventTime string `json:"eventTime"`
 AlarmType string `json:"alarmType"`
 OrigSeverity string `json:"origSeverity"`
 PVFlag string `json:"pvFlag"`
 NeName string `json:"neName"`
 NeType string `json:"neType"`
 ObjectName string `json:"objectName"`
 LocationInfo string `json:"locationInfo"`
 Province string `json:"province"`
 AlarmStatus int `json:"alarmStatus"`
 SpecificProblem string `json:"specificProblem"`
 SpecificProblemID string `json:"specificProblemID"`
 AddInfo string `json:"addInfo"`
 } `json:"Alarms"`
}

3. 配置管理

3.1 参数配置表

类型定义（type）

string

filter指定字符串长度，如："filter": "6~100" , 字符串的长度范围，如果单
个数字表示最大长度

ipv4

filter忽略

ipv6

filter忽略

int

filter指定整型数的范围，如："filter": "100~999"

enum

"filter": '{"0": "http", "1": "https"}'

bool

"filter": '{"0": "false", "1": "true"}'

regex

filter为正则表达式

可选（optional）

true，默认值，表示该字段为可选填，没有写该属性项时optional为true（兼容
以前配置文件）

false，表示必填项

Example

UDM:
system:
 display: "System"
 list:
 - name: "serviceIP"
 type: "ipv4"
 value: "172.16.5.140"
 optional: "false"
 access: "read-write"
 filter: ''
 display: "Service IP"
 comment: ""
 - name: "servicePort"
 type: "int"
 value: "8080"
 access: "read-write"
 filter: "0~65535"
 display: "Service Port"
 comment: "0~65535"
subsSmfSelection:
 display: "Subs Smf Selection"
 array:
 - name: "index"

 type: "int"
 value: "0"
 access: "read-write"
 filter: '0~15'
 display: "Index"
 comment: "0~15"
 - name: "name"
 type: "string"
 value: 'def_ambr'
 access: "read-write"
 filter: '^.{1,32}$'
 display: "Name"
 comment: "0~32"
 - name: "snssai"
 type: "string"
 value: '1-000001'
 access: "read-write"
 filter: '^\d{1,3}[A-Fa-f0-9]{6}$'
 display: "Snssai"
 comment: ""
 - name: "dnnList"
 type: "int"
 value: '0'
 access: "read-write"
 filter: '0~3'
 display: "Dnn List"
 comment: ""
 array:
 - name: "index"
 type: "int"
 value: "0"
 access: "read-write"
 filter: '0~15'
 display: "index"
 comment: "0~15"
 - name: "dnn"
 type: "string"
 value: 'cmnet'
 access: "read-write"
 filter: '^.{1,32}$'
 display: "Dnn"
 comment: "0~32"
 - name: "defaultDnnInd"
 type: "bool"
 value: 'true'
 access: "read-write"
 filter: 'false;true;'
 display: "default Dnn Indicator"
 comment: ""

完整文件具体请参考 udm_param_config.yaml

3.2 获取参数

URI

/api/rest/systemManagement/v1/elementType/{elementTypeValue}/objectType/config
/{paraName}?loc={index0}/{paraName1}/{index1}/...

说明

elementTypeValue: udm, smf, amf... 网元类型
udm paraName: system, subsUEAmbr, subsSmfSelection ...
非array的参数，忽略loc

Params

loc 多层表的定位信息

Method

GET

Return

/api/rest/systemManagement/v1/elementType/udm/objectType/config/system

{
 "data": [
 {
 "serviceIP": "172.16.5.140",
 "servicePort": "8080",
 "...": "..."
 }
]
}

/api/rest/systemManagement/v1/elementType/udm/objectType/config/subsSmfSelecti
on?loc=1/dnnList

{
 "data": [
 {

 "index": "0",
 "dnn": "cmnet",
 "...": "..."
 },
 {
 "index": "1",
 "dnn": "ims",
 "...": "..."
 }
]
}

3.3 配置参数

URI

/api/rest/systemManagement/v1/elementType/{elementTypeValue}/objectType/config
/{paraName}?loc={index0}/{paraName1}/{index1}

Params

loc 多层表的定位信息

Method

POST/PUT/DELETE

说明：

单层表不支持POST/DELETE操作

Body

{
 "serviceIP": "172.16.5.140",
 "servicePort": "8080",
 "...": "..."
}

说明：

DELETE操作不带Body

3.4 创建/修改网元

URI

/api/rest/systemManagement/v1/elementType/{elementTypeValue}/objectType/config
/omcNeConfig

Params

N/A

Method

PUT

Body

type OmcNeConfig struct {
 NeId string `json:"neId" xorm:"ne_id"` // 网元标识(内部),
 RmUID string `json:"rmUID" xorm:"rm_uid"` // neUID/rmUID 网元
唯一标识
 NeName string `json:"neName" xorm:"ne_name"` // 网元名称/友好名称
(北向资源/性能等使用)
 PvFlag string `json:"pvFlag" xorm:"pv_flag"` // 网元虚实性标识
VNF/PNF: 虚拟/物理
 Province string `json:"province" xorm:"province"` // 网元所在省份
 VendorName string `json:"vendorName" xorm:"vendor_name"` // 厂商名称
 // ManagedBy string `json:"managedBy" xorm:"managed_by"` // 管理
ManagedElement的ManagementNode对象类的DN值
 Dn string `json:"dn" xorm:"dn"` // 资源里边的ManagedBy，性能的Dn，网络唯一标识
}

4 性能管理

4.1 任务管理

URI

/api/rest/performanceManagement/v1/elementType/{elementTypeValue}/objectType/m
easureTask?id={taskId1}&id={taskId2}

Method

POST/PUT/DELETE/PATCH

Params

taskId=1&taskId=2

POST: 增加测量任务，激活任务，不带id参数，id在body
PUT： 修改测量任务，激活任务，不带id参数，id在body
DELETE：删除测量任务，不需要带body，带id参数，可带多个
PATCH: 暂停测量任务，不需要带body，带id参数，可带多个

测量任务创建/修改后暂时存储在OMC数据库，激活任务时再下发到网元

Relations

OMC -> NF/NF -> OMC

Body

下发测量任务的报文结构

type MeasureTask struct {
 Tasks []struct {
 Id int `json:"Id"`

 StartTime string `json:"StartTime"`
 EndTime string `json:"EndTime"`

 Schedule struct {
 Type string `json:"Type"` // 计划类型：Weekly/Monthly, 如果type
为"", 则任务以StartTime和EndTime为条件进行统计, 否则以Shedule方式进行
 Days []int `json:"Days"` // Weekly: [0,1,...5,6]，0~6表示星期日
~星期六, Monthly: [1,2,3,...,30,31]一个月的几天
 Periods []struct {
 Start string `json:"Start"` // 零点或者零点加测量粒度的整数倍
00:15:00
 End string `json:"End"` // 零点加测量粒度的整数倍 08:45:00,
16:15:00
 } `json:"Periods"`
 } `json:"Schedule"`

 GranulOption string `json:"GranulOption"` // 测量粒度选项：

15M/30M/60M/24H

 KPISet []struct {
 Code string `json:"Code"` // 统计编码 如：SMFHA01
 KPIs []string `json:"KPIs` // 指标项集合
["SMF.AttCreatePduSession", "SMF.AttCreatePduSession._Dnn"]
 } `json:"KPISet"`
 } `json:"Tasks"`

 NotifyUrl string `json:"NotifyUrl"` /* 数据上报URL
"http://x.x.x.x:xxxx/api/rest/performanceManagement/v1/elementType/smf/objectT
ype/measureReport" */
}

Return

4.2 订阅任务数据上报

URI

/api/rest/performanceManagement/v1/elementType/{elementTypeValue}/objectType/m
easureReport

Method

POST

Relations

NF -> OMC

Body

网元返回测量数据的报文结构

type MeasureReport struct {
 Id int `json:"Id"`
 Timestamp string `json:"TimeStamp"`
 NeName string `json:"NeName"`
 RmUID string `json:"rmUID"`
 NeType string `json:"NeType"`

 Report struct {
 Period struct {
 StartTime string `json:"StartTime"`
 EndTime string `json:"EndTime"`

 } `json:"Period"`

 Datas []struct {
 Code string `json:"Code"` // 统计编码 如：SMFHA01
 KPIs []struct {
 KPIID string `json:"KPIID"` // 指标项, 如：
SMF.AttCreatePduSession._Dnn
 KPIValues []struct {
 Name string `json:"Name"` // 单个的写"Total", 或者指标项有
多个测量项，如Dnn的名称写对应的Dnn"cmnet"/"ims"
 Value int64 `json:"Value"`
 } `json:"KPIValues"`
 } `json:"KPIs"`
 } `json:"Datas"`
 } `json:"Report"`
}

4.3 黄金指标上报

URI

/api/rest/performanceManagement/v1/elementType/{elementTypeValue}/objectType/k
piReport/{index}

index取值范围： 0-1439

Method

POST

Body

type KpiReport struct {
 Timestamp string `json:"TimeStamp"`
 Task struct {
 Period struct {
 StartTime string `json:"StartTime"`
 EndTime string `json:"EndTime"`
 } `json:"Period"`
 NE struct {
 NEName string `json:"NEName"`
 RmUID string `json:"rmUID"`
 NeType string `json:"NeType"`
 KPIs []struct {
 KPIID string `json:"KPIID"`
 Value int `json:"Value"`
 Err string `json:"Err"`

 } `json:"KPIs"`
 } `json:"NE"`
 } `json:"Task"`
}

4.4 测量数据主动上报

URI

/api/rest/performanceManagement/v1/elementType/{elementTypeValue}/objectType/m
easurement/{index}

Method

POST

Relations

NF -> OMC

Params

NA

Body

网元主动上报测量数据的报文结构

 type Measurement struct {
 Index int `json:"Index"` // 1天当中测量时间粒度(如15分钟)的切片索
引: 0~95
 Timestamp string `json:"TimeStamp"`
 NeName string `json:"NeName"` // UserLabel
 RmUID string `json:"rmUID"`
 NeType string `json:"NeType"` // 网元类型
 PmVersion string `json:"PmVersion"` // 性能数据版本号
 Dn string `json:"Dn"` // (???)网元标识, 如:RJN-CMZJ-
TZ,SubNetwork=5GC88,ManagedElement=SMF53456,SmfFunction=53456
 Period string `json:"Period"` // 测量时间粒度选项：5/15/30/60
 TimeZone string `json:"TimeZone"` // 时区, 如: "UTC+8"
 StartTime string `json:"StartTime"`

 Datas []struct {
 ObjectType string `json:"ObjectType"` // 网络资源类别名称, Pm指标项列表
中为空间粒度 如：SmfFunction

 KPIs []struct {
 KPIID string `json:"KPIID"` // 指标项, 如：
SMF.AttCreatePduSession._Dnn
 KPIValues []struct {
 Name string `json:"Name"` // 单个的写"Total", 或者指标项有多个
测量项，如Dnn的名称写对应的Dnn"cmnet"/"ims"
 Value int64 `json:"Value"`
 } `json:"KPIValues"`
 } `json:"KPIs"`
 } `json:"Datas"`
}

Return

Code: 204, no content

4.5 测量数据获取/补采

URI

/api/rest/performanceManagement/v1/elementType/{elementTypeValue}/objectType/m
easurement/{index}

Method

GET

Relations

OMC -> NF

Params

NA

Body

NA

Return

网元返回测量数据的报文结构

type Measurement struct {
 Index int `json:"Index"` // 1天中测量时间粒度(如15分钟)的切片索
引: 0~95
 Timestamp string `json:"TimeStamp"`
 NeName string `json:"NeName"` // UserLabel
 RmUID string `json:"rmUID"`
 NeType string `json:"NeType"` // 网元类型
 PmVersion string `json:"PmVersion"` // 性能数据版本号
 Dn string `json:"Dn"` // (???)网元标识, 如:RJN-CMZJ-
TZ,SubNetwork=5GC88,ManagedElement=SMF53456,SmfFunction=53456
 Period string `json:"Period"` // 测量时间粒度选项：5/15/30/60
 TimeZone string `json:"TimeZone"`
 StartTime string `json:"StartTime"`

 Datas []struct {
 ObjectType string `json:"ObjectType"` // 网络资源类别名称, Pm指标项列表
中为空间粒度 如：SmfFunction
 KPIs []struct {
 KPIID string `json:"KPIID"` // 指标项, 如：
SMF.AttCreatePduSession._Dnn
 KPIValues []struct {
 Name string `json:"Name"` // 单个的写"Total", 或者指标项有多个
测量项，如Dnn的名称写对应的Dnn"cmnet"/"ims"
 Value int64 `json:"Value"`
 } `json:"KPIValues"`
 } `json:"KPIs"`
 } `json:"Datas"`
}

5 跟踪管理

5.1 订阅管理

创建订阅

URI

/api/rest/traceManagement/v1/subscriptions

Method

POST

Relations

OMC front-end->OMC back-end, OMC -> NF

Body

OMC front-end->OMC back-end: id 不带 OMC->NF：id必选

type TraceTask struct {
 Id int `json:"id"`
 TraceType string `json:"traceType"`
 StartTime string `json:"startTime"`
 EndTime string `json:"endTime"`
 Imsi string `json:"imsi"`
 Msisdn string `json:"msisdn"`
 SrcIp string `json:"srcIp"`
 DstIp string `json:"dstIp"`
 SignalPort int16 `json:"signalPort"`
 NeType string `json:"neType"`
 NeId string `json:"neId"`
 UeIp string `json:"ueIp"`
 Interfaces []string `json:"interfaces"`
 NotifyUrl string `json:"notifyUrl"`
}

Example:

{
 "id": 3,
 "traceType": "Interface",
 "startTime": "2023-07-04 13:00:00",
 "endTime": "2023-07-04 19:00:00",
 "neType": "UDM",
 "neId": "SZ_01",
 "interfaces": ["N8","N10"],
 "notifyUrl": "gtp:192.168.0.229:2152",
}

Return

Code=204 non-content

修改订阅

URI

/api/rest/traceManagement/v1/subscriptions

Method

PUT

Relations

OMC front-end->OMC back-end, OMC -> NF

Body

type TraceTask struct {
 Id int `json:"id"`
 TraceType string `json:"traceType"`
 StartTime string `json:"startTime"`
 EndTime string `json:"endTime"`
 Imsi string `json:"imsi"`
 Msisdn string `json:"msisdn"`
 SrcIp string `json:"srcIp"`
 DstIp string `json:"dstIp"`
 SignalPort int16 `json:"signalPort"`
 NeType string `json:"neType"`
 NeId string `json:"neId"`
 UeIp string `json:"ueIp"`
 Interfaces []string `json:"interfaces"`
 NotifyUrl string `json:"notifyUrl"`
}

Example:

{
 "id": 3,
 "traceType": "Interface",
 "startTime": "2023-07-04 13:00:00",
 "endTime": "2023-07-04 19:00:00",
 "neType": "UDM",
 "neId": "SZ_01",
 "interfaces": ["N8","N10", "N11"],
 "notifyUrl": "gtp:192.168.0.229:2152",
}

Return

Code=204 non-content

删除订阅

URI

/api/rest/traceManagement/v1/subscriptions?id={id1}&id={id2}

Method

DELETE

Relations

OMC front-end->OMC back-end, OMC -> NF

Params

id：订阅任务id，支持多个

Body

NA

Return

Code=204, non-content

查询订阅 (暂不实现，直接从数据库查询)

URI 查询单个订阅：

/api/rest/traceManagement/v1/subscriptions?id={id}

查询所有订阅：

/api/rest/traceManagement/v1/subscriptions

Method

GET

Body

NA

Return

{
 "data": [
 {
 "id": 1,
 "traceType": "Interface",
 "startTime": "2023-07-04 13:00:00",
 "endTime": "2023-07-04 19:00:00",
 "neType": "UDM",
 "neId": "SZ_01",
 "interfaces": ["N8","N10", "N11"]
 }
]
}

5.2 消息上报

Example:

{
 "id": [1,2],
 "timestamp": "20230413 16:02:27.523496",
 "imsi": "4600001000000001",
 "msisdn": "12307550001",
 "srcAddr": "192.168.1.172:51034",
 "dstAddr": "192.168.1.187:8080",
 "neType": "AMF",
 "neId": "SZ_0",
 "interface": "N8",
 "data": "00002f01040000007f418d0be25c2e3cb8570bcedc780f038345",
 "diagnosis": "It is external debug information",
}

6. 操作维护

6.1 MML命令

6.1.1 MML命令格式

命令格式

oper object:parameter1={value1},parameter2={value2},parameter3={value3};

操作(operation)

根据实际操作可选用如下动作，如果没有合适的可自行增加，要做到简

洁直观

add: 增加
mod(set)：修改/设置
del(rmv)：删除
dsp(lst)：查询显示
bak：备份
exp：导出
imp：导入
bat: 批量
exec(run)：执行
act/dea: 激活/去激活

与对象之间采用空格分隔

对象(object)

操作的对象，如签约数据(sub/udmuser)/鉴权数据(auth/authdat), n7接口
(n7server)
对象名称用所操作对象的英文名(或缩写), 为字母或者数字的组合, 不含空
格, "-", "_"等特殊字符
使用":"与参数进行分隔

参数(param)

参数名采用英文常用名/约定俗成的缩写/缩略语等, 如imsi，msisdn，ip，
port等, 为字母或者数字的组合, 不含空格, "-", "_"等特殊字符
参数值为字符串, 如有":", ",", ";", "\"字符, 需加"\"进行转义
参数之间用","进行分隔

命令结束符";", 操作/对象/参数均采用小写字母（HW采用的都是大写字母）

目前现有的各个网元的命令格式

除了UDM签约数据/鉴权数据的MML格式和上述格式基本一致, 各个网元的系统参数
MML都不一样, 需统一成上述格式

UDM鉴权数据/签约数据

add
authdat:imsi=460000100000030,ki=805DADC6E8A54A0D59D622C7A04D08E0,amf=8000
,algo=0,opc=CF7FD414E05754CFE08B4FE7F2EF2A36

UDM系统参数

set n8ip 172.16.5.130

AMF系统参数

set n8_ip 192.168.1.121

SMF/UPF系统参数

set n7 server <http|https> <ip> <port>

6.1.2 MML配置表

类型定义（type）

string

filter指定字符串长度，如："filter": "6~100" , 字符串的长度范围，如果单个数
字表示最大长度

ipv4

filter忽略

ipv6

filter忽略

int

filter指定整型数的范围，如："filter": "100~999"

enum

"filter": '{"0": "http", "1": "https"}'

bool

"filter": '{"0": "false", "1": "true"}'

regex

filter为正则表达式

Example

udm:
 authdataManagement:
 display: "Authentication Data Management"
 mml:
 - operation: "dsp"
 object: "authdat"
 display: "Display Auth Data"
 params:
 - name: "imsi"
 type: "string"
 optional: "false"
 filter: ""
 display: "IMSI"
 comment: ""
 subscriberManagement:
 display: "Subcriber Management"
 mml:
 - operation: "dsp"
 object: "authdat"
 display: "Display Auth Data"
 params:
 - name: "imsi"
 type: "string"
 optional: "false"
 filter: ""
 display: "IMSI"
 comment: ""
 systemManagement:
 display: "System Management"
 mml:
 - operation: "set"
 object: "n8ip"
 display: "Set N8 IP Address"
 params:
 - name: "ip"
 type: "ipv4"
 optional: "false"
 filter: ""
 display: "IP Address"
 comment: ""

6.2 MML接口

URI

/api/rest/opeartionManagement/v1/elementType/{elementTypeValue}/objectType/mml
?ne_id={neId}

Relations

OMC front-end -> OMC back-end

OSS -> OMC (北向接口)

Params

ne_id={neId}

Method

POST

Body

{
 "mml": [
 "date",
 "list ver",
 "list lic",
 "list comm"
]
}

Return

{
 "data": [
 "2023-05-11 17:52:32.37333745 +0800 CST m=+28762.188435351\n",
 "16.1.1\n",
 "Expiry date: 2024-12-31, sn: 13740272\n",
 "COMMAND NOT FOUND, opr: list, obj: comm\n"
]
}

7 北向接口(NBI)

7.1 查询资源数据接口

URI

/api/rest/resourceManagement/{apiVersion}/elementType/{elementTypeValue}/objec
tType/{objectTypeValue}?rmUIDs={rmUIDValues}&fields={attributeNames}

Relations

OMC -> NF

OSS -> OMC (北向接口)

Params

rmUIDs={rmUIDValues}

可携带多额rmUID(统一资源定位符), OMC->NF不带

fields={attributeNames}

属性域集合={属性名列表}, 指定资源对象多个属性名的英文逗号分割，一个属
性名时无英文逗号。

Method

GET

Body

GET /api/rest/resourceManagement/v1/elementType/SMF/objectType/ManagedElement?
rmUIDs=1101AGTHXSMF0000015704000100&fields=UserLabel HTTP/1.1
accessToken: 52661fbd-6b84-4fc2-aa1e-17879a5c6c9b
Host: serverIP:port
Content-Type: application/json; charset=UTF-8
Content-Length:…
{
}

Return

HTTP/1.1 200 OK
Content - Type: application/json
Content-Length:…
{
 "data": [{
 "rmUID": "1101AGTHXSMF0000015704000100",
 "UserLabel": "SMFRJBJJC01",
 ...
 }]
}

8 文件接口

8.1 软件管理

8.1.1 软件包管理接口

URI

/api/rest/systemManagement/v1/{neType}/software/{version}?md5Sum={md5Sum}

Relations

OMC front-end -> OMC back-end

Params

md5Sum={md5Sum}

Method

POST: upload to OMC, 上传文件到OMC, content_type=multipart/form-data
GET: download from omc, 下载文件到OMC, content_type=multipart/form-
data
DELETE: delete from omc

Body

POST: 软件包文件, OMC按网元类型存储文件，如果文件名相同则会覆盖

Return

POST/DELETE: code=204
GET: code=200, 返回文件

8.1.2 网元软件包管理接口

URI

/api/rest/systemManagement/v1/{neType}/software/{version}/{neId}

Relations

OMC front-end -> OMC back-end

Params

Method

POST: distribute to NF
PUT: active
PATCH: rollback

Body

NA

Return

Code: 204 Not content

8.2 License管理

8.2.1 License文件管理接口

URI

/api/rest/systemManagement/v1/{neType}/license

Relations

OMC front-end -> OMC back-end

Params

Method

POST: upload to OMC, 上传文件到OMC, content_type=multipart/form-data
GET: download from omc, 下载文件到OMC, content_type=multipart/form-
data
DELETE: delete from omc

Body

POST: 携带License文件, OMC按网元类型存储文件，如果文件名相同则会覆盖

Return

Code: 204 Not content

8.2.2 网元License管理接口

URI

/api/rest/systemManagement/v1/{neType}/license/{neId}

Relations

OMC front-end -> OMC back-end

Params

Method

POST: distribute to NF
PUT: active
PATCH: rollback

Body

NA

Return

Code: 204 Not content

9 4A接口

9.1 从账号(user)管理接口

9.1.1 查询全部从账号(user)接口

URI

/api/rest/aaaa/v1/security/users

Relations

4A -> OMC

Params

Method

GET

Body

Return

9.1.2 单个从账号(user)接口

URI

/api/rest/aaaa/v1/security/users/{id}

Relations

4A -> OMC

Params

Method

GET/POST/PUT/DELETE

Body

Return

9.2 角色(role)管理接口

9.2.1 查询全部角色(role)接口

URI

/api/rest/aaaa/v1/security/roles

Relations

4A -> OMC

Params

Method

GET

Body

Return

9.2.2 单个角色(role)接口

URI

/api/rest/aaaa/v1/security/roles/{id}

Relations

4A -> OMC

Params

Method

GET/POST/PUT/DELETE

Body

Return

9.3 登录认证接口

9.2.1 登录认证

URI

/api/rest/aaaa/v1/security/authentication/token

Relations

4A -> OMC

Params

Method

GET

Body

Return

10 核心网用户信息接口

10.1 UDM签约用户

10.1.1 查询/增加/修改/删除

用MML接口

Uri

/api/rest/ueManagement/v1/elementType/UDM/objectType/subData/{imsi}?neId=
{neId}

Relations

OMC -> UDM

Params

OMC-FE -> OMC-BE, neId={neId}, 指定UDM的neId

Method

GET

Body

NA

Return

 // SmfUEInfo SMF在线用户信息
 type SubData struct {
 IMSI string `json:"imsi"` // SIM卡号
 MSISDN string `json:"msisdn""`
 Amf string `json:"amf"` // Amf
 Status string `json:"status"` // 状态
 Ki string `json:"ki"` // ki
 AlgoIndex string `json:"algoIndex"` //
 Opc string `json:"opc"`
 }

 {
 "data":
 {
 "imsi": "460000100000010",
 "msisdn": "12307550010",
 "...": "..."
 }
 }

10.2 UDM鉴权用户

10.2.1 查询/增加/修改/删除

用MML接口

10.3 UE信息

10.3.1 查询SMF在线用户数

Uri

/api/rest/ueManagement/v1/elementType/smf/objectType/ueNum?neId={neId}

Relations

OMC -> SMF

Params

OMC-FE -> OMC-BE, neId={neId}, 指定SMF的neId

Method

GET

Body

NA

Return

 // SmfUENum SMF在线用户数
 type SmfUENum struct {
 UENum int `json:"ueNum"` // 当前在线用户数
 }

 {
 "data":
 {
 "ueNum": 6
 }
 }

10.3.2 查询SMF在线用户

说明：为了避免在线用户太多，SMF可做限制，如返回不超过100条

Uri

/api/rest/ueManagement/v1/elementType/smf/objectType/ueInfo?imsi=
{imsi}&msisdn={msisdn}&neId={neId}

Relations

OMC -> SMF

Params

OMC-FE -> OMC-BE, neId={neId}, 指定SMF的neId
OMC -> SMF, imsi={imsi} 或者 msisdn={msisdn}，可选，如果都不指定，则
查询全部ueInfo

Method

GET

Body

NA

Return

 // SmfUEInfo SMF在线用户信息
 type SmfUEInfo []struct {
 IMSI string `json:"imsi"`
 MSISDN string `json:"msisdn"`
 PduSessionInfo []struct {
 PduSessionID int `json:"pduSessionID"`
 IPv4 string `json:"ipv4"`
 IPv6 string `json:"ipv6"`
 Dnn string `json:"dnn"`
 Tai string `json:"tai"`
 SstSD string `json:"sstSD"`
 UpfN3IP string `json:"upfN3IP"`
 RanN3IP string `json:"ranN3IP"`
 Activetime string `json:"activeTime"`
 } `json:"pduSessionInfo"`
 }

 {
 "data": [
 {
 "imsi": "460000100000010",
 "msisdn": "12307550010",

 "pduSessionInfo": [
 {
 "pduSessionID": "1",
 "ipv4": "172.16.5.5",
 "...": "..."
 },
 {
 "pduSessionID": "2",
 "ipv4": "172.16.5.6",
 "...": "..."
 }
]
 },
 {
 "imsi": "460000100000238",
 "msisdn": "12307550238",
 "pduSessionInfo": [
 {
 "pduSessionID": "3",
 "ipv4": "172.16.5.7",
 "...": "..."
 },
 {
 "pduSessionID": "4",
 "ipv4": "172.16.5.8",
 "...": "..."
 }
]
 }
]
 }

10.4 IMS在线用户信息

10.4.1 查询IMS在线用户信息

说明：为了避免在线用户太多，IMS可做限制，如返回不超过100条

Uri

/api/rest/ueManagement/v1/elementType/ims/objectType/ueInfo?imsi=
{imsi}&msisdn={msisdn}&neId={neId}

Relations

OMC -> IMS

Params

OMC-FE -> OMC-BE, neId={neId}, 指定IMS的neId
OMC -> IMS, imsi={imsi} 或者 msisdn={msisdn}，可选，如果都不指定，则查
询全部ueInfo

Method

GET

Body

NA

Return

 // ImsUEInfo IMS在线用户信息
 type ImsUEInfo []struct {
 IMSI string `json:"imsi"`
 MSISDN string `json:"msisdn"`
 IMPU string `json:"impu"`
 Barring int `json:"barring"`
 RegState int `json:"regState"`
 Activetime string `json:"activeTime"`
 }

 {
 "data": [
 {
 "imsi": "460000100000010",
 "msisdn": "12307550010",
 "impu": "sip:12307550010@ims.mnc000.mcc460.3gppnetwork.org",
 "barring": 0,
 "regState": 1,
 "activeTime": "2023-07-11 18:26:46"
 },
 {
 "imsi": "460000100000238",
 "msisdn": "12307550038",
 "impu": "sip:12307550238@ims.mnc000.mcc460.3gppnetwork.org",
 "barring": 0,
 "regState": 1,
 "activeTime": "2023-07-11 18:26:46"
 }
]
 }

10.5 基站信息

10.5.1 查询某个AMF下的基站信息

Uri

/api/rest/ueManagement/v1/elementType/amf/objectType/nbInfo?nbId={nbId}&neId=
{neId}

Relations

OMC -> AMF

Params

OMC-FE -> OMC-BE, neId={neId}, 指定AMF的neId
OMC -> AMF, nbId={nbId}, 可选，如果不指定则查询全部基站信息

Method

GET

Body

NA

Return

 // AmfNBInfo AMF的NodeB信息
 type AmfNBInfo []struct {
 ID string `json:"id"` //NodeB ID
 Name string `json:"name"` // NodeB name
 Address string `json:"address"` // 基站地址
 UENum int `jons:"ueNum"` // UE数量
 }

 {
 "data": [
 {
 "id": "6001",
 "name": "NB6001",
 "address": "192.168.1.245:36412",
 "ueNum": 2
 },
 {
 "id": "6002",
 "name": "NB6002",

 "address": "192.168.1.246:36412",
 "ueNum": 6
 }
]
 }

	EMS restful interfaces
	1. 状态管理
	2 故障管理
	2.1 告警上报
	2.2 获取网元告警

	3. 配置管理
	3.1 参数配置表
	3.2 获取参数
	3.3 配置参数
	3.4 创建/修改网元

	4 性能管理
	4.1 任务管理
	4.2 订阅任务数据上报
	4.3 黄金指标上报
	4.4 测量数据主动上报
	4.5 测量数据获取/补采

	5 跟踪管理
	5.1 订阅管理
	5.2 消息上报

	6. 操作维护
	6.1 MML命令
	6.1.1 MML命令格式
	6.1.2 MML配置表

	6.2 MML接口

	7 北向接口(NBI)
	7.1 查询资源数据接口

	8 文件接口
	8.1 软件管理
	8.1.1 软件包管理接口
	8.1.2 网元软件包管理接口

	8.2 License管理
	8.2.1 License文件管理接口
	8.2.2 网元License管理接口

	9 4A接口
	9.1 从账号(user)管理接口
	9.1.1 查询全部从账号(user)接口
	9.1.2 单个从账号(user)接口

	9.2 角色(role)管理接口
	9.2.1 查询全部角色(role)接口
	9.2.2 单个角色(role)接口

	9.3 登录认证接口
	9.2.1 登录认证

	10 核心网用户信息接口
	10.1 UDM签约用户
	10.1.1 查询/增加/修改/删除

	10.2 UDM鉴权用户
	10.2.1 查询/增加/修改/删除

	10.3 UE信息
	10.3.1 查询SMF在线用户数
	10.3.2 查询SMF在线用户

	10.4 IMS在线用户信息
	10.4.1 查询IMS在线用户信息

	10.5 基站信息
	10.5.1 查询某个AMF下的基站信息

