Front-end architecture design

front-end architecture

web browser ‘ HTML/CSS/JS (single page application, modules loaded on demand)]
Page Route
[Request Access Filter] [Middleware]
Individual Page Module
{ Front Page J [Signlin] [System Management J [network element] [Other Modules J

Vue Page Component Pinia Status Management toals
. - common pagel page2 page3 network element Routing Info common plug-in
Vue Applications
component library chart library Other information Third Party Library

Service Requests

[APl Module Management } [Request data processing } [Middleware]

Backend Service API

Authentication API J [Data Management API]
AP| Datasheet { :

{ Other Module Management API]

Front-end technology selection

Vue3 and React have many similarities in terms of functional features, such as
virtual DOM and component-based features. However, Vue3 has some advantages
over React in terms of performance, such as faster rendering speed, smaller code
size, better typescript support, etc. In terms of benchmark scores, Vue performs
much better than React and Angular in js-framework-benchmark. In this benchmark
test, it is also on par with some of the fastest non-virtual DOM frameworks in
production environments.

Compared to the familiarity within the development team, lower entry barriers,
and excellent documentation, it can significantly reduce the onboarding and training
costs for novice developers. The trend of the surrounding community ecology
continues to grow, so choosing Vue3 is more advantageous. The final decision on
overall architecture uses a technology stack.

1. Afront-end/design solution for the middle and back-end based on Vue 3.x.

2. Adopt Pinia as a state management pattern specifically designed for Vue.js
application development.

3. Using Vue Router routing manager, we implement page routing control, local
refresh, and on-demand loading, build a Single Page Application, and achieve front-
end and back-end separation.

4. Native support for promise-based HTTP libraries in Fetch browser.

5. TypeScript provides strong typing support for coding standards, which is more
suitable for developing large and medium-sized projects.

6. Using Ant Design of Vue, a web component library from Ant Financial's
enterprise-level backend product visual style.

7. Responsive layout, designed for different screen sizes, suitable for computers,
tablets, and mobile phones.

8. Implement an industry-wide internationalization solution that supports Simplified
Chinese and English.

9. Using Vite as the standard tool for Vue.js development, it provides fast service
startup and hot reloading for efficient coding work, packaging and publishing to
obtain the optimal output application.

Browser support: Supports common browsers on the market, does not support IE,
and does not support versions below Chrome 97.

Vue Introduction

Main features:
- Easytolearn and use

Built on standard HTML , CSS and JavaScript , with easy-to-use APIs and top-notch
documentation.

- Excellent performance

After being optimized by the compiler, a fully responsive rendering system requires
almost no manual optimization.

« Flexible and changeable

A rich and progressively integrated ecosystem that allows for easy switching between
libraries and frameworks based on the size of the application.

Vue is a mature, battle-tested framework. It is one of the most widely used JavaScript
frameworks in production environments today, with over 1.50 million users worldwide
and over 10 million monthly downloads on npm .

Vue is a completely free and open source project released under the MIT License .

The latest version of Vue (3.x) only supports browsers that natively support ES2015 .
This does not include IE11.

Responsive system

Vue's most iconic feature is its low-intrusive reactive system. Component states are
made up of reactive JavaScript objects. Views are automatically updated when they
are changed.

Vue 2 uses Object.defineProperty's getter and setter to create reactive objects, while
Vue 3 uses Proxy to create reactive objects.

The reactive system uses the MVVM architecture pattern, which consists of three
parts: Model, View, and ViewModel.

The Model layer represents the data model, usually defining the business logic for
data modification and operation around the backend interface data rules.

View represents the Ul component of the page, which is composed of HTML + CSS
to form an interactive component and transform the data model into Ul display.

ViewModel is an object that synchronizes View and Model. Using the API provided by
Vue can better synchronize the transformation.

View
Page Ul components

v
ViewModel

Page Components - Data Model
Bidirectional correlation

A

v
Model
Data Models

Rendering mechanism

From a macro perspective, the following things happen when Vue components are

https://opensource.org/licenses/MIT
https://caniuse.com/es6

mounted:

1. Compile: The Vue template is compiled as a render function: that is, a function
that returns the virtual DOM tree. This step can be done in advance through the build
step or immediately through the use of the runtime compiler.

2. Mount: The runtime renderer calls the render function, traverses the returned
virtual DOM tree, and creates the actual DOM node based on it. This step is
performed as a reactive side effect, so it tracks all reactive dependencies used in it.

3. Update: When a dependency changes and the side effect reruns, an updated
virtual DOM tree is created. The runtime renderer traverses the new tree, compares it
to the old tree, and applies the necessary updates to the real DOM.

render .
Template function Virtual DOM Actual DOM
code tree

component
reactive

state

Component life cycle

Each Vue component instance goes through a series of initialization steps when
created, such as setting up data listeners, compiling templates, mounting instances
to the DOM , and updating the DOM when data changes. During this process, it also
runs functions called lifecycle hooks, giving developers the opportunity to run their
code at specific stages.

Renderer

encounters component

setup | _ _ __ _______
(Compasition API)
[beforeCreate]4- ____________

Init Options API

[created]4—

Has
pre-compiled
template?

Compile template
on-the-fly

[beforeMount]4- ------------

initial render
create & insert DOM nodes

whgn_data
[mounted]4- ----------- . - Thanges™ ~ .

1 \
1 ~

1
when -
component
is unmPunted

1
[beforeUnmount]4- ----------- JI
[unmounted]4

[beforeUpdate]

v

re-render

and patch

[updated]

Interact with backend data

Through the API request provided by the backend, use the HTTP Client Fetch based
on Promise to access the API, get the response result and display the data.

The following is an example code of components built in engineering:

TypeScript
<script lang="ts" setup>
import { ref, onMounted } from 'vue';

// Declaring Variables - Page Usage Data
let resultData = ref({})

// Declaration period - after page rendering
onMounted(() => {
// For API access
fetch('https://api.example.com/x/web-
interface/zone?jsonp=jsonp', {
headers: {
‘accept-language': 'zh-CN,zh;q=0.9",

¥
referrerPolicy: 'no-referrer-when-downgrade',
body: null,

method: 'GET',
mode: 'cors',
})

.then(res => {
return res.json();

}

.then(data => {
// Assign the response result to the page variable
resultData.value = data
// Browser Console output response result
console.log(data);

1

3

</script>

<template>
<div>
<l-- After the page is opened, wait for ms to get the data

display -->
{{ resultData }}
</div>
</template>

<style lang="less" scoped></style>

In actual engineering projects, intercept request data formats are used for request
responses.

Vue project

The background front-end project built with vue3 + vite4 + typescript , the following is
the common directory structure, in the actual development process, will make some
small changes according to the project.

Plain Text

probject_vue3

F—— bin directory-executing
scripts

— public directory-Public file
definitions

| — favicon.ico file-favicon icon

| F—— font_8d518fzk5b87iudi.js file-menu font icon

| F—— loading. js file-first time loading
Loading

I

— src directory-source code
| F—— api directory-all requests
| — assets directory-images,
styles, etc. than pre-compiled resources

| F—— components directory-global utility
components

| — constants directory-global
constants

| | directive directory-global
directives

| | hooks directory-Hook Tools

| — 1layouts directory-Framework

Layouts

| F—— plugins
variable methods
| | router

| F—— store
Variable Cache

| | typings
declarations

| — utils

methods

| }— views

components

| }—— App.vue

component
| L— main.js

components Initialization, etc.

F—— .editorconfig

— .env.development
environment configuration
F—— .env.production
environment configuration
F—— .gitignore

— index.html

— LICENSE

F—— package.json
Information

— README . md

— tsconfig.json

— tsconfig.node.json
L vite.config.ts

directory-generic

directory-Routing
directory-Global

directory-global type
directory-static utility
directory-page display
file-entry page

file-entry Load

file-development

file-production

file-root HTML template
file-Project Package

file-project description
file-ts configuration

file-vite configuration

