

Front-end architecture design

Front-end technology selection

 Vue3 and React have many similarities in terms of functional features, such as

virtual DOM and component-based features. However, Vue3 has some advantages

over React in terms of performance, such as faster rendering speed, smaller code

size, better typescript support, etc. In terms of benchmark scores, Vue performs

much better than React and Angular in js-framework-benchmark. In this benchmark

test, it is also on par with some of the fastest non-virtual DOM frameworks in

production environments.

Compared to the familiarity within the development team, lower entry barriers,

and excellent documentation, it can significantly reduce the onboarding and training

costs for novice developers. The trend of the surrounding community ecology

continues to grow, so choosing Vue3 is more advantageous. The final decision on

overall architecture uses a technology stack.

1. A front-end/design solution for the middle and back-end based on Vue 3.x.

2. Adopt Pinia as a state management pattern specifically designed for Vue.js

application development.

3. Using Vue Router routing manager, we implement page routing control, local

refresh, and on-demand loading, build a Single Page Application, and achieve front-

end and back-end separation.

4. Native support for promise-based HTTP libraries in Fetch browser.

5. TypeScript provides strong typing support for coding standards, which is more

suitable for developing large and medium-sized projects.

6. Using Ant Design of Vue, a web component library from Ant Financial's

enterprise-level backend product visual style.

7. Responsive layout, designed for different screen sizes, suitable for computers,

tablets, and mobile phones.

8. Implement an industry-wide internationalization solution that supports Simplified

Chinese and English.

9. Using Vite as the standard tool for Vue.js development, it provides fast service

startup and hot reloading for efficient coding work, packaging and publishing to

obtain the optimal output application.

Browser support: Supports common browsers on the market, does not support IE,

and does not support versions below Chrome 97.

Vue Introduction

Main features:

• Easy to learn and use

Built on standard HTML , CSS and JavaScript , with easy-to-use APIs and top-notch

documentation.

• Excellent performance

After being optimized by the compiler, a fully responsive rendering system requires

almost no manual optimization.

• Flexible and changeable

A rich and progressively integrated ecosystem that allows for easy switching between

libraries and frameworks based on the size of the application.

Vue is a mature, battle-tested framework. It is one of the most widely used JavaScript

frameworks in production environments today, with over 1.50 million users worldwide

and over 10 million monthly downloads on npm .

Vue is a completely free and open source project released under the MIT License .

The latest version of Vue (3.x) only supports browsers that natively support ES2015 .

This does not include IE11.

Responsive system

Vue's most iconic feature is its low-intrusive reactive system. Component states are

made up of reactive JavaScript objects. Views are automatically updated when they

are changed.

Vue 2 uses Object.defineProperty's getter and setter to create reactive objects, while

Vue 3 uses Proxy to create reactive objects.

The reactive system uses the MVVM architecture pattern, which consists of three

parts: Model, View, and ViewModel.

The Model layer represents the data model, usually defining the business logic for

data modification and operation around the backend interface data rules.

View represents the UI component of the page, which is composed of HTML + CSS

to form an interactive component and transform the data model into UI display.

ViewModel is an object that synchronizes View and Model. Using the API provided by

Vue can better synchronize the transformation.

Rendering mechanism

From a macro perspective, the following things happen when Vue components are

https://opensource.org/licenses/MIT
https://caniuse.com/es6

mounted:

1. Compile: The Vue template is compiled as a render function: that is, a function

that returns the virtual DOM tree. This step can be done in advance through the build

step or immediately through the use of the runtime compiler.

2. Mount: The runtime renderer calls the render function, traverses the returned

virtual DOM tree, and creates the actual DOM node based on it. This step is

performed as a reactive side effect , so it tracks all reactive dependencies used in it.

3. Update: When a dependency changes and the side effect reruns, an updated

virtual DOM tree is created. The runtime renderer traverses the new tree, compares it

to the old tree, and applies the necessary updates to the real DOM.

Component life cycle

Each Vue component instance goes through a series of initialization steps when

created, such as setting up data listeners, compiling templates, mounting instances

to the DOM , and updating the DOM when data changes. During this process, it also

runs functions called lifecycle hooks, giving developers the opportunity to run their

code at specific stages.

Interact with backend data

Through the API request provided by the backend, use the HTTP Client Fetch based

on Promise to access the API, get the response result and display the data.

The following is an example code of components built in engineering:

TypeScript

<script lang="ts" setup>

import { ref, onMounted } from 'vue';

// Declaring Variables - Page Usage Data

let resultData = ref({})

// Declaration period - after page rendering

onMounted(() => {

 // For API access

 fetch('https://api.example.com/x/web-

interface/zone?jsonp=jsonp', {

 headers: {

 'accept-language': 'zh-CN,zh;q=0.9',

 },

 referrerPolicy: 'no-referrer-when-downgrade',

 body: null,

 method: 'GET',

 mode: 'cors',

 })

 .then(res => {

 return res.json();

 })

 .then(data => {

 // Assign the response result to the page variable

 resultData.value = data

 // Browser Console output response result

 console.log(data);

 });

});

</script>

<template>

 <div>

 <!-- After the page is opened, wait for ms to get the data

display -->

 {{ resultData }}

 </div>

</template>

<style lang="less" scoped></style>

In actual engineering projects, intercept request data formats are used for request

responses.

Vue project

The background front-end project built with vue3 + vite4 + typescript , the following is

the common directory structure, in the actual development process, will make some

small changes according to the project.

Plain Text

probject_vue3

├── bin directory-executing

scripts

├── public directory-Public file

definitions

│ ├── favicon.ico file-favicon icon

│ ├── font_8d5l8fzk5b87iudi.js file-menu font icon

│ ├── loading.js file-first time loading

Loading

│ └── ...

├── src directory-source code

│ ├── api directory-all requests

│ ├── assets directory-images,

styles, etc. than pre-compiled resources

│ ├── components directory-global utility

components

│ ├── constants directory-global

constants

│ ├── directive directory-global

directives

│ ├── hooks directory-Hook Tools

│ ├── layouts directory-Framework

Layouts

│ ├── plugins directory-generic

variable methods

│ ├── router directory-Routing

│ ├── store directory-Global

Variable Cache

│ ├── typings directory-global type

declarations

│ ├── utils directory-static utility

methods

│ ├── views directory-page display

components

│ ├── App.vue file-entry page

component

│ └── main.js file-entry Load

components Initialization, etc.

├── .editorconfig

├── .env.development file-development

environment configuration

├── .env.production file-production

environment configuration

├── .gitignore

├── index.html file-root HTML template

├── LICENSE

├── package.json file-Project Package

Information

├── README.md file-project description

├── tsconfig.json file-ts configuration

├── tsconfig.node.json

└── vite.config.ts file-vite configuration

